3x^2-5x=5(20-x)

Simple and best practice solution for 3x^2-5x=5(20-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-5x=5(20-x) equation:



3x^2-5x=5(20-x)
We move all terms to the left:
3x^2-5x-(5(20-x))=0
We add all the numbers together, and all the variables
3x^2-5x-(5(-1x+20))=0
We calculate terms in parentheses: -(5(-1x+20)), so:
5(-1x+20)
We multiply parentheses
-5x+100
Back to the equation:
-(-5x+100)
We get rid of parentheses
3x^2-5x+5x-100=0
We add all the numbers together, and all the variables
3x^2-100=0
a = 3; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·3·(-100)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*3}=\frac{0-20\sqrt{3}}{6} =-\frac{20\sqrt{3}}{6} =-\frac{10\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*3}=\frac{0+20\sqrt{3}}{6} =\frac{20\sqrt{3}}{6} =\frac{10\sqrt{3}}{3} $

See similar equations:

| 12x-70=6x+128 | | 3(m-2)-(m+2)=7 | | -8(m+8)-2(m+6)=m-4-5m | | ?x15-35=75 | | x-5x-10=9+x-7 | | 156=2x+5(-2x+12) | | 4x+34=82 | | 12+2x+26=x+28 | | 156=2x=5(-2x+12) | | 8^(-2x)-4=23 | | 1+3(5+a)=5a+30 | | 156=2x+5(-2x=12) | | 1+3(5+a0=5a+30 | | 3x+20=2+80 | | 2(-5)-y=13 | | 12y-2y+6=56 | | 14x-34=12x-8 | | 9+6n=-2n+5n | | 140=60+20x | | 3*x=2*x+68 | | 74y=7-5y+54 | | 7=4y=7-5y+54 | | 7=4y=7-5y=54 | | a^2=(9/8)2 | | -4(8-4x)+8(1+7x)=48 | | X+2x+10=180 | | 35=-5x+50 | | 89=7x+2(x-5) | | b^2=36/169 | | -(8y+4)=3y*4-47 | | -4=-7(8x+4)-4(8x-6) | | 6(4.5-12y)=9 |

Equations solver categories